Travel Mode Identification with Smartphone Sensors
نویسندگان
چکیده
Travel Mode Identification with Smartphone Sensors by Xing Su Advisor: Hanghang Tong Personal trips in a modern urban society typically involve multiple travel modes. Recognizing a traveller’s transportation mode is not only critical to personal context-awareness in related applications, but also essential to urban traffic operations, transportation planning, and facility design. While the state of the art in travel mode recognition mainly relies on large-scale infrastructure-based fixed sensors or on individuals’ GPS devices, the emergence of the smartphone provides a promising alternative with its ever-growing computing, networking, and sensing powers. In this thesis, we propose new algorithms for travel mode identification using smartphone sensors. The prototype system is built upon the latest Android and iOS platforms with multimodality sensors. It takes smartphone sensor data as the input, and aims to identify six travel modes: walking, jogging, bicycling, driving a car, riding a bus, taking a subway. The methods and algorithms presented in our work are guided by two key design principles. First, careful consideration of smartphones’ limited computing resources and batteries should be taken. Second, careful balancing of the following dimensions (i) user-adaptability, (ii) energy efficiency, and (iii) computation speed.
منابع مشابه
Improvement of the Effective Components in the PDR Positioning Method Based on Detecting the User’s Movement Mode Using Smartphone Sensors
The purpose of this paper is to evaluate and improve the accuracy of indoor positioning using smartphone sensors based on Pedestrian Dead Reckoning (PDR) method. In some specific situations, such as fires or power outages that disable infrastructure-based positioning techniques, using PDR method based on smartphone sensors that perform positioning continuously is a good solution.This paper focu...
متن کاملTravel Mode Detection with Varying Smartphone Data Collection Frequencies
Smartphones are becoming increasingly popular day-by-day. Modern smartphones are more than just calling devices. They incorporate a number of high-end sensors that provide many new dimensions to smartphone experience. The use of smartphones, however, can be extended from the usual telecommunication field to applications in other specialized fields including transportation. Sensors embedded in t...
متن کاملA Comparison among various Classification Algorithms for Travel Mode Detection using Sensors’ data collected by Smartphones
Nowadays, machine learning is used widely for the purpose of detecting the mode of transportation from data collected by sensors embedded in smartphones like GPS, accelerometer and gyroscope. A lot of different classification algorithms are applied for this purpose. This study provides a comprehensive comparison among various classification algorithms on the basis of accuracy of results and com...
متن کاملDamage identification of structures using second-order approximation of Neumann series expansion
In this paper, a novel approach proposed for structural damage detection from limited number of sensors using extreme learning machine (ELM). As the number of sensors used to measure modal data is normally limited and usually are less than the number of DOFs in the finite element model, the model reduction approach should be used to match with incomplete measured mode shapes. The second-order a...
متن کاملAutomated Urban Travel Interpretation: A Bottom-up Approach for Trajectory Segmentation
Understanding travel behavior is critical for an effective urban planning as well as for enabling various context-aware service provisions to support mobility as a service (MaaS). Both applications rely on the sensor traces generated by travellers' smartphones. These traces can be used to interpret travel modes, both for generating automated travel diaries as well as for real-time travel mode d...
متن کامل